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Abstract

This paper discusses the effectiveness of an Active Structural Acoustic Control (ASAC) system for the reduction of

repetitive impact noise, radiated by structures with a high modal density in the controlled frequency range. Although there

is a significant difference in nature between periodic and transient noise, up till now no specific research on ASAC of

transient noise was reported. The development of the ASAC system is divided into two phases: the definition of the control

configuration and the design of a suitable control algorithm. The optimal control configuration as well as the implemented

control algorithm for the reduction of impact noise differ significantly from the common solutions in periodic noise

control. In the first part of the paper, a practical methodology is presented to define a good control arrangement for

transient noise control. The second part of the paper focuses on the design of control algorithms, adapted to the specific

properties of impact noise. Since many industrial impact noise problems involve successive impacts with a repetitive

behaviour, control algorithms with a learning behaviour are discussed. The efficiency of these Iterative Learning Control

(ILC) algorithms is extensively demonstrated in this paper. The developed ASAC strategy has been verified on a thick steel

plate, which is excited by successive impacts. The obtained results show that ASAC can be a very efficient transient noise

control technique in certain industrial applications (e.g. presses, punching machines, etc.).

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Noise pollution from modern industrial activities is an environmental problem of growing importance.
Especially in machine halls with production machines such as punching machines and presses, that generate
impact noise, the radiated noise levels exceed often the legal regulations regarding human exposure to noise
[1,2]. The noise, radiated by these machines, is mainly structure-borne, i.e. generated by structural vibrations
of different mechanical parts. Various studies [3,4] have shown that Active Structural Acoustic Control
(ASAC) has some potential to reduce stationary structure-borne noise. In ASAC the sound field radiated by a
structure is controlled by intervening in the structural vibrations with actuators. Although there is a significant
difference between periodic and transient noise, up till now almost no particular research on ASAC of
transient noise has been reported, at least not to the authors’ knowledge. The goal of the presented research is
to study the possibilities of ASAC techniques to reduce transient structure-borne noise.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The efficiency of an ASAC system depends on the characteristics of the control actuators and sensors, on
their configuration as well as on the implemented control algorithm. First of all, for the reduction of transient
noise, actuators should be available, which can deliver the necessary energy levels within the required (short)
time intervals. The physical arrangement of the control system defines the maximum achievable performance,
while the controller design determines how close the practical system approximates this performance.

The first part of the paper describes a methodology to define the optimal control configuration. Based on
experimental and simulation results, the best configuration for an optimal global performance of the practical
ASAC system can be found.

In the second part of the paper, the algorithm for the control of the actuator(s) is designed. The existing
ASAC control algorithms for the reduction of stationary noise can be classified into two groups: feedforward
and feedback control algorithms. The standard adaptive feedforward algorithms [5] (e.g. filtered-x LMS
algorithm), which are nowadays most popular in ASAC applications, cannot be used for the control of
transient noise signals, since the adaptive part is often based on a continuous convergence to an optimum.
Recently some new feedforward algorithms with specific adaptive filters [6] are proposed for the control
of impulsive noise. Contrary to the conventional feedforward algorithms, the commonly used feedback
algorithms developed for the control of continuous noise can be used for transient noise. However, the use
of these feedback controllers is limited for practical, industrial applications: due to the high modal density
of the controlled structures in the frequency range of interest, it is impossible to design efficient feedback
controllers of limited order. Since in many industrial impact noise problems the successive impacts
have a repetitive behaviour (e.g. a punching machine often performs the same operations several times), a
learning behaviour can be introduced in the control algorithms, resulting in an improved performance of the
controller as the number of controlled impacts increases. This paper presents the development of Iterative
Learning Control (ILC) algorithms, which can be considered as adaptive feedforward algorithms. In an ILC
controller the control signal is adapted to the specific repetitive properties of the transient noise from
successive impacts. Because in industrial machinery, which radiates impact noise, advanced knowledge is often
available of when the impact will occur, the ILC control filters can be noncausal: in this way the ILC
controller can anticipate for a future impact. The advantages and drawbacks of causal and noncausal filtering
in ILC algorithms are discussed in this paper. In the final ASAC controller, a combination of an ILC and a
feedback algorithm is implemented, which is an example of a hybrid feedforward–feedback system as
proposed in Refs. [7,8].

The last part of the paper presents the global noise reduction results, achieved by the developed ASAC
systems. Several control configurations and algorithms are compared and the performance and the practical
limitations of various strategies are discussed.

2. Demonstrator

In this paper, the developed ASAC strategies are used to cancel the low frequency ðo1000HzÞ noise
radiated by a thick free–free suspended plate ð500mm� 600mm� 15mmÞ, which is excited by successive,
repetitive impacts (Fig. 1). This set-up is studied, because its dynamic and acoustic behaviour resembles that of
the massive frames of production machines, which radiate impact noise (e.g. punching machines, presses): the
primary
actuator

secondary
actuator

error
accelerometer

Fig. 1. The impact plate test setup with a primary disturbance and secondary control shaker and an error accelerometer.
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Table 1

The resonance frequencies of the plate below 1000Hz, defined by an experimental identification

Resonance number 1 2 3 4 5 6 7 8 9 10 11

Resonance frequency (Hz) 160 205 227 325 399 458 611 772 796 881 991
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Fig. 2. The radiated noise, measured in the far field when the plate was excited by the primary shaker: (a) A-weighted noise levels in the

one-third octave bands below 1000Hz and A-weighted overall Sound Power Level and (b) detailed A-weighted autopowerspectrum

between 500 and 900Hz.
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plate, which has a high modal density in the controlled frequency range below 1000Hz (Table 1), radiates
structureborne noise. A plate is an ideal demonstration breadboard since it is easy to define a reliable model to
evaluate the theoretical possibilities of different ASAC controllers.

The disturbing impact forces on the plate are not caused by the actual collision of an object and the plate,
but are simulated by a primary inertia shaker, generating force pulses on the plate with a duration of 2ms. In
this way, especially the low-frequency modes of the plate below 1000Hz are excited, which is the frequency
range to tackle by active means. Noise, which is radiated by the plate at higher frequencies, can be damped
more efficiently by passive control techniques.

Since the successive input signals to the primary actuator are identical, the impact forces on the plate as well
as the resulting vibrations and the radiated noise pulses are repetitive. The time between two consecutive
impacts is variable but is always longer than 4 s such that the vibrations, due to a previous impact, are totally
damped out when a new impact is generated. Consequently, the control of a new impact is not influenced by
the previous impacts. Analogously to industrial machinery, where advanced knowledge is often available
about the moment of the coming impact, in the demonstrator a trigger signal becomes active 0.5 s before a new
voltage pulse is sent to the primary shaker.

Fig. 2(a) shows the A-weighted radiated noise levels in the one-third octave bands below 1000Hz, which are
measured in the far field when the plate is excited by the primary shaker. Most of the radiated acoustic energy
is situated in the one-third octave bands with centre frequencies 630 and 800Hz. A detailed
autopowerspectrum of the radiated noise in this frequency range from 500 to 900Hz is given in Fig. 2(b):
the spectrum is mainly dominated by three efficiently radiating resonance frequencies of the plate (at 611, 772
and 881Hz). Consequently the ASAC strategy should focus on noise reduction of the corresponding structural
modes between 500 and 900Hz.
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3. Control configuration

The first phase in the development of an ASAC system is the definition of the optimal control configuration,
i.e. the choice of the number and the location of actuator(s) and sensor(s). Many studies, both numerical and
experimental, have already been devoted to this research topic. Two approaches can be distinguished, based
on the goal function which is considered: some researchers minimize the vibration or acoustic level at certain
locations, while others use vibration or acoustic power as cost function [9]. Simple problems (ASAC of beams
[10], plates [11,12], etc.) can be described analytically such that different control configurations can be
compared quite easily and some general design guidelines can be developed. Because the dynamic and acoustic
behaviour of more complicated structures can only be evaluated by numerical models (e.g. finite element
models, boundary element models, etc.) or extensive experimental models, the definition of the optimal control
configuration demands computationally intensive optimisation algorithms (e.g. genetic algorithms [13,14]).
Therefore, in many practical ASAC applications, the measuring/modelling and optimisation effort will be too
high, even for a limited number of actuators and sensors. Consequently, simpler design rules, which can find
sub-optimal but satisfactory configurations, are required. In this paragraph, a new methodology is presented
to find suitable locations for actuators and sensors in the case of ASAC of impact noise. This methodology
is a 2-step procedure, which first defines the actuator locations and afterwards searches compatible sensor
locations.

Previous research [15] shows that, if a limited number of actuators and sensors is used, the optimal control
arrangement is strongly frequency dependent. Since in the case of an impact excitation a broadband frequency
range is excited, the performance of the control system should be balanced over this whole frequency range. In
the excited frequency range, the structure will mainly vibrate and radiate noise at certain efficiently radiating
resonance frequencies such that an efficient vibration reduction at these frequencies mainly determines the
overall impact noise reduction and outweighs the control performance at other frequencies. Therefore, the
actuators should be positioned at locations with a good controllability of the modes at these resonance
frequencies. The controllability of different positions can be checked by calculating or measuring the
resonance frequencies and corresponding mode shapes. The complexity of the structure and the impact
duration, which defines the excited frequency range, determine the number of actuators required for a good
vibration reduction. For the free–free suspended plate set-up, one actuator in a corner of the plate is sufficient,
because all modes can be excited in this position. Also in the considered practical applications, one actuator is
often sufficient to suppress the most efficiently radiating resonance frequencies, e.g. in a punching machine one
actuator in a corner of the frame can control the most efficiently radiating structural modes.

The second part in the definition of the control configuration is the selection of the sensor locations. For
arbitrary sensor positions, resonances as well as anti-resonances appear in the transfer function between the
actuator and the sensor. The resonance frequencies are identical for all the possible sensor locations, while the
anti-resonance frequencies strongly depend on the sensor position. At a resonance frequency, the plate
response to a force is dominated by one mode shape and a large vibration reduction at the error sensor will
result in a global reduction of the plate vibrations. At an off-resonance frequency, the plate response is
governed by several modes, and a good vibration reduction at the error sensor will not necessarily result in a
global reduction. Especially at an anti-resonance frequency of the actuator–sensor transfer function, a high
force will be generated by the secondary actuator to create a good vibration reduction at the sensor location.
However, since an anti-resonance is not a global property of the plate, this high force will cause high vibration
levels at the greater part of the plate and the global vibration level will be amplified instead of being reduced.

It is clear that, when there are anti-resonances in the actuator–sensor transfer function, the local impact
disturbance rejection at the error sensor does not result in a good global performance. This problem can be
solved by an optimal choice of the control algorithm or by a suitable selection of the control configuration.
A control algorithm should be developed which only cancels the error sensor vibrations at the resonance
frequencies without sending a control signal at the intermediate anti-resonance frequencies. In this way, the
resonance frequencies can be damped, resulting in a global vibration reduction at these frequencies, while the
response at the anti-resonance frequencies is unaltered. Unless a very specific collocated control configuration
is used (see the next section), the required control algorithm will be very complicated for systems with a high
modal density in the controlled frequency range. A second solution is the avoidance of anti-resonances in the
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transfer function between the actuator and the sensor. The position of the error sensor on the plate is defined
according to this second solution. Since most of the acoustic energy is radiated between 500 and 900Hz
(Section 2), the ASAC strategy should focus on a noise reduction in this frequency range. Therefore the error
sensor should be positioned such that, between 500 and 900Hz, all the efficiently radiating modes can be
observed and the number of zeros in the transfer function between the actuator force and the sensor response
is as small as possible. Forty possible error sensor positions have been compared experimentally.
After measuring the transfer functions between the secondary actuator and all these possible sensor positions,
the observability of the efficiently radiating modes between 500 and 900Hz is checked for each sensor. The
sensor locations with a limited observability of one or more modes are no longer retained. Afterwards,
the number of zeros between 500 and 900Hz are defined for the remaining transfer functions. A few locations
can be found with only one zero in this frequency range. Out of these locations, the sensor, corresponding
with the highest minimum value of the transfer function between 500 and 900Hz, is selected. This position,
which is used in the practical experiments, is also indicated in Fig. 1. The transfer function between the
actuator force and the sensor response at this position is shown in Fig. 3(a). A more detailed representation of
the frequency range between 500 and 900Hz is plotted in Fig. 3(b): it is clear that all the efficient radiating
modes are present and that only one zero around 800Hz (with sufficient damping) occurs in this transfer
function. Consequently, if a control algorithm can be designed, which cancels the disturbance at this error
sensor, this will result in a global reduction of the radiated noise. The design of such algorithm is the subject of
the following section.

4. Iterative learning control

4.1. Introduction

The second step in the design of an ASAC system, after the selection of a suitable control configuration, is
the implementation of an efficient controller, which processes the sensor information to send a control signal
to the actuator(s). Because the conventional feedback and feedforward ASAC control algorithms for the
reduction of stationary noise are not suitable in this application (due to respectively the high modal density of
the radiating structure and the transient character of the disturbance), an iterative learning control (ILC)
algorithm is applied in the presented ASAC controller for the plate. ILC is a relatively new area of study in
control theory, very suitable to cancel repetitive disturbances [16].
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The ILC approach was motivated by the intuitive idea that it should be possible to improve the performance of
a system that performs repetitively the same task and reproduces continuously the same error (welding robots,
pick-and-place machines, etc.). Using the experience from the past, modifications to the input signal can be applied
to the system during the next operation in order to obtain a better future performance. The first contribution on
ILC, a paper by Uchiyama [17], was not widely known, because it was only published in Japanese. The idea of ILC
was further developed by Arimoto [18,19], mainly active in the field of robotics, and became also popular among
other researchers (Longman [20], Horowitz [21], etc.). A good survey of ILC can be found in the book of Moore
[22] and a more recent overview paper [23]. Longman [20] presents some practical ILC design rules for engineering
applications. In a recent paper by Goldsmith [24] it was shown that ILC was not fundamentally different from
time-invariant control methods. He proves that causal ILC can do no better than conventional feedback control
and suggests that future work on ILC should focus on the benefits of noncausal ILC filters. The practical
usefulness of a noncausal ILC system will be demonstrated extensively in this section. Although the potential of
ILC was demonstrated for a broad class of applications during the last two decades, the technique has only very
recently been used in the field of ANC [25] and ASAC [26]. In both papers, the results obtained by the ILC
controller are superior compared to those achieved by conventional feedback and feedforward control methods.

4.2. Theoretical background

The plate system, that is controlled in this paper, is considered to be linear time-invariant and causal and is
described by the following system description:

yðkÞ ¼ PsecðDÞuðkÞ þ PdistðDÞdðkÞ (1)

with
D
 the unit delay operator (DxðkÞ ¼ xðk þ 1Þ)

PsecðDÞ
 the discrete operator, which defines the relation between the input signal to the secondary actuator

and the signal measured by the error accelerometer

PdistðDÞ
 the discrete operator, which defines the relation between disturbing impact force and the signal

measured by the error accelerometer

yðkÞ
 the signal measured by the error accelerometer at time interval k
uðkÞ
 the control signal sent to the secondary actuator at time interval k
dðkÞ
 the disturbing impact force at time interval k
Since separate impacts are studied, which generate transient vibrations in the plate, several discrete time
intervals with a fixed duration (p time steps) can be studied separately. A trigger signal, which announces a
new impact and defines the beginning ki of a new time interval, is supposed to be available. Define the p step
histories of the error signal, the control signal and the disturbance force at the ith impact according to:

yi ¼ ½yið0Þ yið1Þ . . . yiðp� 1Þ�T (2)

ui ¼ ½uið0Þ uið1Þ . . . uiðp� 1Þ�T (3)

di ¼ ½dið0Þ dið1Þ . . . diðp� 1Þ�T (4)

with

yiðkÞ ¼ yðki þ kÞ (5)

uiðkÞ ¼ uðki þ kÞ (6)

diðkÞ ¼ dðki þ kÞ (7)

Because the successive disturbing impact forces are supposed to be repetitive, all the time series di are equal
to d. Using Eqs. (2)–(4), the system description Eq. (1) can be posed in a matrix form:

yi ¼ Psecui þ Pdistdi (8)
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with

Psec ¼
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where hPsec
ðkÞ and hPdist

ðkÞ are the discrete impulse responses of the operators PsecðDÞ and PdistðDÞ.
In this paper, a first order, trial-invariant ILC algorithm, which is represented in Fig. 4, is applied. In first-

order ILC, the control signal for a new impact ui only depends on the control signal ui�1 and the remaining
error signal yi�1 at the previous impact, while in higher-order ILC [27,28] the control and error signals of
earlier impacts ui�2, yi�2, ui�3, yi�3, etc. can also influence the control signal ui. The control filters are supposed
to be trial-invariant, which means that the control law between the input signals ui�1 and yi�1 and the
calculated ILC control signal ui is invariant over all impacts. The ILC control law, applied in the developed
control algorithms, is linear: the control signal for the new impact ui is a linear combination of the previous
control signal ui�1 and the error signal yi, measured at the previous impact:

ui ¼ Qui�1 þ Lyi�1 (11)

with
Q, L: p� p-matrices
In most applications, Q, which relates the control signal for the new impact ui to the previous control signal

ui�1, is a diagonal matrix with constant coefficients, mostly equal to 1. L, which defines the relation between
the new control signal ui and the error signal at the previous impact yi�1, determines the stability of the ILC
algorithm. In case of causal ILC, L is lower triangular, which means that a time sample of the new control
signal uiðnÞ is only influenced by earlier samples of the error at the previous impact yi�1ðnÞ, yi�1ðn� 1Þ,
yi�1ðn� 2Þ, etc. Since ILC is an offline method, which processes the data from a previous impact to calculate
the control signal for the new impact, also noncausal operators can be used in the design of ILC filters. Fig. 5
shows how these noncausal operators can use ‘future’ time samples from a previous impact (yi�1ðnþ 1Þ,
yi�1ðnþ 2Þ, etc.) to calculate the current control action. Due to this noncausal filtering, the ILC controller can
anticipate for a new impact, announced by the trigger signal. In this paper, the benefits of noncausal ILC are
investigated, allowing L to be a full matrix of learning gains.

The ILC system, described by Eq. (11), will be bounded-input, bounded-output stable, if the magnitudes of
all the eigenvalues of Q� PsecL are less than 1 [29]:

jlsðQ� PsecLÞjo1 8s (12)

When this condition is fulfilled, the error signal converges to

y1 ¼ ðI�Q� PsecLÞ
�1
ðI�QÞPdistd (13)

It is important to notice that the error signal can only become 0 if Q ¼ I. This is the reason why most of the
proposed ILC schemes operate with Q ¼ I.
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In the remainder of this paper, Q is supposed to be diagonal with constant coefficients q and L is
supposed to be the matrix representation of a noncausal time-invariant difference equation with transfer
function LðzÞ:

Q ¼ qI (14)

and

L ¼

hLð0Þ hLð�1Þ hLð�2Þ . . . hLð�ðp� 1ÞÞ

hLð1Þ hLð0Þ hLð�2Þ hLð�ðp� 2ÞÞ

hLð2Þ hLð1Þ hLð0Þ hLð�ðp� 3ÞÞ

..

. . .
. ..

.

hLðp� 1Þ hLðp� 2Þ hLðp� 3Þ . . . hLð0Þ

2
66666664

3
77777775

(15)

where hLðkÞ is the discrete impulse response of LðzÞ.
Analogous to this expression, Q can be interpreted as the matrix representation of a difference equation

with transfer function QðzÞ ¼ q.
Although stability and convergence can be obtained by fulfilling condition Eq. (12), the practical usefulness

of this formula is very limited. Since a monotonic convergence is not guaranteed, the transient behaviour of
the ILC algorithm can be undesirable. The poor transient behaviour of some ILC algorithms, although
complying to Eq. (12), is clearly illustrated in Ref. [20]: it is possible that a disturbance has first grown to
undesirably high levels during the first impacts before it is ultimately canceled after a high number of impacts.
To assure good transients, a criterion for monotonic convergence is required. The following condition,
formulated in the frequency domain, guarantees a monotonic decay of the amplitudes of all the frequency
components [20]:

jq� LðeioT ÞPsecðe
ioT Þjo1 (16)

with
T
 the sampling time

o
 the angular frequency
LðeioT Þ
 the discrete Fourier transform of L
Psecðe
ioT Þ
 the discrete Fourier transform of Psec
This criterion indicates that the Nyquist curve of LðeioT ÞPsecðe
ioT Þ has to be located inside a unit circle with the

center point ðq; 0Þ, commonly denoted as the learning circle. Although this formula is only correct for a steady-state
response, Longman shows in Ref. [20] that it is also a good condition to get a reduction of the transient response.

In the design of the ILC control matrices Q and L, developed for the control of the plate, a trade-off has
to be made between performance (Eq. (13)) and stability (Eq. (16)). Therefore the following design procedure
is suggested:
(1)
 The transfer function between the secondary actuator and the error sensor is measured.

(2)
 The control filter LðzÞ is shaped such that, in the frequency range where control performance is required,
� the phase of LðeioT ÞPsecðe

ioT Þ stays between �90� and 90� to assure stability (Eq. (16) with q � 1) and
� the maximum amplitude of LðeioT ÞPsecðe

ioT Þ is almost equal to 1 to guarantee performance (Eq. (13)).

(3)
 A bandpass filter is added to the LðzÞ-filter for stability reasons such that the amplitude of LðeioT ÞPsecðe

ioT Þ

decreases significantly outside the frequency range of interest, where the �90� and 90�-phase limits
are exceeded.
(4)
 The last phase in the ILC design, is the definition of q, which should be chosen as close as possible to 1
for a good performance (Eq. (13)): if for q ¼ 1 the Nyquist curve of LðeioT ÞPsecðe

ioT Þ goes outside the
learning circle, a slightly smaller value should be chosen for q to introduce robustness in the control
algorithm.
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4.3. Practical implementation
Two ILC algorithms are discussed in the remainder of this section. First a causal ILC algorithm is presented
to show the equivalence of this algorithm with time-invariant feedback control algorithms and to indicate the
limitations in the design of the ILC controller when only causal filters are used. In the second example, the
interesting benefits of noncausal ILC filters are exploited. In all the experiments, the secondary actuator is an
inertia shaker and the error sensor is an accelerometer.

4.3.1. Example 1: causal ILC

Due to the high modal density of the plate in the controlled frequency range, it is impossible to design a
stable causal control algorithm of limited order for the optimal control arrangement, defined in the previous
section. Therefore, the causal algorithm is implemented for a collocated control configuration, where the
actuator as well as the sensor are placed in the same corner of the plate. This collocated configuration with a
dual actuator and sensor pair results in some very attractive stability properties, i.e. alternating poles and zeros
in the secondary plant transfer function Psec (Fig. 6).

The control matrices Q and L are designed according to the aforementioned methodology. First, the L-filter
was shaped. In the lower frequency range, the phase of Psec can be easily compensated by a negative phase of
the L-filter to keep the phase of LPsec between �90

� and 90�. The gain of L is adjusted such that the maximum
amplitude of LPsec is close to 1 in this lower-frequency range. In the higher frequency range (above 500Hz), it
is impossible to design a causal L-filter, which compensates the phase loss of Psec caused by a time delay.
Consequently, for robustness, a lowpass filter should be introduced in L to decrease the amplitude of LPsec

at the higher frequencies, where the phase of LPsec exceeds the (�90
�, 90�)-limits. This results in the following

L-filter (Fig. 7(a)):

L ¼
�30

sþ 2p60
(17)

This filter was developed in the continuous domain and afterwards transformed to the discrete domain using
Tustin’s transformation rule. Since for q ¼ 1 the Nyquist curve of LPsec exceeds the learning circle, q has to
be reduced to 0.97. Fig. 7(b) shows that for this value of q the stability condition for monotonic convergence
Eq. (16) is fulfilled.

The reduction jY1ðe
ioT Þj=jPdistðe

ioT ÞDðeioT Þj, which can be theoretically obtained by the implementation of
the developed ILC algorithm, is evaluated using Eq. (13) and is shown in Fig. 8 (Y1ðe

ioT Þ and DðeioT ) are the
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discrete Fourier transform of y1 and d, respectively). The greatest theoretical reduction can be achieved at the
resonance frequencies of the plate, while there is no reduction at the intermediate frequencies. According to
Eq. (13), the final error at the sensor will be only small, if PsecL is high compared to I �Q. Since the
alternating poles and zeros of Psec are not compensated by the L-filter, PsecL will only be high enough at the
poles of Psec to create a vibration reduction. At the intermediate frequencies between the poles, no control
signal will be sent to the secondary actuator and the vibration pattern is unaltered. Due to the lowpass
characteristic of the ILC filter L, the frequency band in which reduction can be obtained at the error sensor is
limited: the error can only be reduced by more than 5 dB at the resonance peaks of the plate below 450Hz. It is
also important to notice that this low-frequency performance does not result in a deterioration in the higher
frequency range.
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Goldsmith [24] and Verwoerd [30] state that for causal ILC filters Q and L an equivalent time-invariant
feedback controller exists, which yields the same theoretical reduction at the error sensor (Fig. 8). This
equivalent feedback controller can be defined as

CFB ¼ ðI�QÞ�1L (18)

In this application, the resulting equivalent controller becomes

CFB ¼
L

1� q
¼

�30

0:03ðsþ 2p60Þ
(19)

The performance of the ILC controller is practically compared with the time-invariant feedback controller on the
plate set-up. Both algorithms are implemented on a dSPACE 1103 DSP board, which calculates the control
signals for the secondary actuator. Fig. 9(a) shows the error signals in the time domain, when the plate is excited
by a primary impact force. The different curves compare the remaining error signals, which are obtained by the
ILC algorithm after a different number of impacts. During the first 80 impacts, the error acceleration, caused by
the primary shaker, becomes significantly smaller at each impact, due to the updated ILC control force. This
learning behaviour can also be observed in Fig. 9(b): there is a clear reduction of the error signal in the lower
frequency range between 50 and 250Hz during the first 80 impacts. After the 80th impact, the ILC algorithm has
converged and there is no further improvement at the consecutive pulses. While the vibration reduction is
significant in the lower frequency, the ILC algorithm has no influence on the error signal in the higher frequency
range. This behaviour was exactly predicted by the theoretical formula in Eq. (13), as was explained above.

Contrary to the ILC controller, the performance of the time-invariant feedback controller is equal for all the
controlled impact disturbances. The reduction achieved by this time-invariant controller is plotted in Fig. 10
and compared to the reduction obtained by the ILC controller after convergence. It is clear that the time-
invariant feedback controller can achieve the same error after one impact as the ILC controller obtains only
after convergence, which requires a large number of learning impacts. This result shows that it is useless to
apply a causal learning controller, which requires a certain number of impacts to update the control signal
before convergence is achieved. Another disadvantage of the ILC algorithm, which can be avoided by
applying a time-invariant feedback algorithm, is the necessity of an accurate trigger signal to predict the next
impact: while the time-invariant controller is permanently active, the ILC controller only sends a control
signal to the secondary actuators, when a new impact is announced by a trigger signal. Since this example
causal ILC: reduction in time domain
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shows that there is no reason to use causal ILC instead of time-invariant feedback control, in the following
paragraphs the possibilities of noncausal ILC are investigated.

4.3.2. Example 2: noncausal ILC

In this paragraph, a noncausal ILC algorithm is designed for the control of the optimal sensor–actuator
configuration, which was selected in Section 3. The transfer function of the secondary plant Psec for this
control arrangement is shown in Fig. 3(a). The control matrices Q and L are again designed according to the
methodology, presented in the first part of this section. The frequency range, where control performance is
desired, is situated between 500 and 900Hz. Since in this range the phase of LPsec should stay between �90�

and 90�, the phase lag of 540� in Psec between 500 and 900Hz caused by 4 poles and only 1 zero should be
compensated by 3 zeros in the control filter L, which are placed at 620, 780 and 880Hz. In order to limit the
high-frequency amplification of L, each zero in the controller is compensated by a pole. Therefore 3 poles at
frequencies higher than 900Hz are introduced in L (1 pole at 900Hz and 2 poles at 5000Hz). This results in
the following controller L1:

L1 ¼ L1;aL1;bL1;c (20)

with

L1;a ¼
9002

6202
s2 þ 2� 0:01ð2p620Þsþ ð2p620Þ2

s2 þ 2� 0:03ð2p900Þsþ ð2p900Þ2
(21)

L1;b ¼
50002

7802
s2 þ 2� 0:01ð2p780Þsþ ð2p780Þ2

s2 þ 2� 0:03ð2p5000Þsþ ð2p5000Þ2
(22)

L1;c ¼
50002

8802
s2 þ 2� 0:03ð2p880Þsþ ð2p880Þ2

s2 þ 2� 0:03ð2p5000Þsþ ð2p5000Þ2
(23)

Due to the 3 poles between 500 and 900Hz, the phase of LPsec stays inside a band of 180� in this frequency
range. To shift this 180�-band between �90� and 90�, a second compensator has been added to L1:

L2 ¼ L1
2p50

sþ 2p50
s2 þ 2� 0:4ð2p1000Þsþ ð2p1000Þ2

s2 þ 2� 0:4ð2p2000Þsþ ð2p2000Þ2
(24)

Figs. 11(a and b) show the transfer functions of L2 and L2Psec. It is clear that, in the frequency range of
interest (500–900Hz), the phase of L2Psec stays between �90

� and 90�. The developed L2-filter is still causal,
the benefits of noncausality are only used in the second phase of the controller design. Two noncausal
bandpass filters L3 and L4 are added to L2 to create L such that the amplitude of LPsec decreases significantly
outside the frequency range of interest without any phase change. L3 consists of a noncausal lowpass filter L3;lp
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and a noncausal highpass filter L3;hp. Since a strong roll-off is necessary to decrease the amplitude of LPsec

sufficiently outside the frequency range 500–900Hz, these both filters are of 12th order (the actual
implementation of these noncausal filters is explained in Appendix A). In both filters, the phase lag due to a
causal pole is compensated by the phase lead due to an anti-causal pole (an anti-causal system does not
process earlier samples from a previous impact but only uses future time samples to calculate the current
control action):

L3 ¼ L3;lpL3;hp (25)

with

L3;lp ¼
ð2p600Þ4

ðs2 þ 2� 0:4ð2p600Þsþ ð2p600Þ2Þðs2 � 2� 0:4ð2p600Þsþ ð2p600Þ2Þ

� �3

(26)

L3;hp ¼
s4

ðs2 þ 2� 0:4ð2p800Þsþ ð2p800Þ2Þðs2 � 2� 0:4ð2p800Þsþ ð2p800Þ2Þ

� �3

(27)

Finally, a second noncausal compensator L4 was also implemented in the ILC control filter L ð¼ L2L3L4Þ to
create some extra robustness. The compensator L4 consists of 2 causal (both at 700Hz) and 2 anti-causal
(also at 700Hz) poles as well as 2 causal (at 400 and 1200Hz) and 2 anti-causal zeros (also at 400 and
1200Hz). This further increases the amplitude of LPsec between 500 and 900Hz and reduces its amplitude just
below and above this frequency range, again without any phase change.

L4 ¼
Lzero;1Lzero;2

L2
pole

(28)

with

Lzero;1 ¼ ðs
2 þ 2� 0:05ð2p400Þsþ ð2p400Þ2Þðs2 � 2� 0:05ð2p400Þsþ ð2p400Þ2Þ (29)

Lzero;2 ¼ ðs
2 þ 2� 0:1ð2p1200Þsþ ð2p1200Þ2Þðs2 � 2� 0:1ð2p1200Þsþ ð2p1200Þ2Þ (30)

Lpole ¼
1

ðs2 þ 2� 0:3ð2p700Þsþ ð2p700Þ2Þðs2 � 2� 0:3ð2p700Þsþ ð2p700Þ2Þ
(31)
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The gain of L is adjusted such that the maximum amplitude of LPsec is close to 1 in the frequency range of
interest. The transfer function of the resulting L-filter is shown in Fig. 12(a). Compared to the transfer
function of L2, there is no change of the phase due to the use of noncausal filters, such that the phase of LPsec

still stays between �90� and 90� between 500 and 900Hz. However, the amplitude is strongly reduced below
500Hz and above 900Hz, generating the desired bandpass characteristic. If the same bandpass filtering of the
amplitude would have been created by a causal filter, this would have caused a strong phase change over a
broad frequency range, also between 500 and 900Hz, the frequency range of interest. It is impossible to keep
the phase of LPsec between �90

� and 90� in this latter range with a causal ILC controller, that generates the
required bandpass characteristic of L. This bandpass filtering without a phase change is a great benefit of
noncausal filters.

Based on the selected L-filter, the value q, which defines the Q-filter, is chosen. Since for a q-value of 1 the
condition for monotonic convergence Eq. (16) is not fulfilled, q is reduced to 0.98. Fig. 12(b) shows that for
this value of q the Nyquist curve of LPsec does not exceed the learning circle, which guarantees monotonic
convergence.

The theoretical reduction jY1ðe
ioT Þj=jPdistðe

ioT ÞDðeioT Þj, which can be achieved by the selected L- and
Q-filter, is shown in Fig. 13. Contrary to the causal controller in the previous section, a high error reduction
can be achieved by this noncausal ILC controller in the higher frequency range, where most of the noise is
radiated. The error in the error accelerometer can be reduced by at least 10 dB over the whole frequency range
of interest from 500 to 900Hz. While the causal controller only reduces the error at the resonance peaks, the
noncausal controller with a L-filter, which compensates all the zeros and poles of Psec, creates a broadband
vibration reduction at the error sensor: there is not only a reduction at the resonance frequencies but also at
the intermediate frequencies.

The noncausal controller as discussed in the previous paragraphs has been implemented on a dSPACE 1103
DSP board and applied to the plate case study. A detailed survey of the practical implementation of a
noncausal control filter can be found in Appendix A. In the remainder of this section, the local results,
achieved by the noncausal controller at the error sensor, are studied. The influence of the controller on the
global plate vibration level and the radiated acoustic noise level will be described in the next section.

The results, obtained by the noncausal controller at the error sensor in the plate experiments, are plotted in
Figs. 14(a and b). Fig. 14(a) shows the error acceleration signals in the time domain, when the plate is excited
by a primary impact force. The different curves compare the remaining error signals, which are obtained by
the noncausal ILC algorithm after a different number of impacts. Since most of the vibration power in the
error sensor is situated in the lower frequency range below 250Hz and the greatest reduction is achieved



ARTICLE IN PRESS
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between 500 and 900Hz, the reduction due to the learning process can hardly be detected in the time domain.
However, the learning behaviour can clearly be observed in the frequency domain (Fig. 14(b)): in the
frequency bands between 500 and 750Hz and between 750 and 1000Hz there is a clear reduction of more than
15 dB of the error signal during the first 50 impacts, while below 500Hz the error signal has not changed. This
is exactly the performance, which was theoretically predicted (Fig. 13). After the 50th impact, the learning
behaviour of the ILC algorithm has converged and there is no further reduction.

5. Controller performance evaluation

This section discusses first the global performance (i.e. the total vibration level and the radiated noise level)
of the implemented causal and noncausal algorithm. Afterwards the benefits of a controller, which combines
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both algorithms, are investigated. The global vibration level and the radiated noise level are measured,
respectively, by 7 accelerometers, uniformly distributed over the plate and by 1 microphone in the far field
(2m from the plate). The global vibration level is defined as the rms-value of the accelerations measured by
these 7 accelerometers.

5.1. Example 1: causal ILC

Since the reduction in the error sensor, which is achieved by the causal ILC algorithm after convergence, is
the same as the reduction by the equivalent time-invariant feedback algorithm, the global performance of both
controllers is also equal. Therefore, the results are only presented for the practically more feasible time-
invariant feedback controller.

Fig. 15 shows the vibration levels of the plate without and with control. It is clear that in the lower
frequency range below 500Hz the resonance peaks are strongly damped by the causal controller. In the
intermediate frequency ranges between the resonances, the global vibration level of the plate does not change,
because the causal controller does not send a control signal to the secondary actuator in these frequency
bands. Due to this controller design, a global vibration reduction of 10 dB is obtained between 100 and
500Hz. In the higher frequency range above 500Hz, the global vibration level is also not influenced by the
causal controller due to the lowpass filter in the design of L and CFB. The resulting overall reduction of the
global plate vibrations is 5.5 dB. In Fig. 16, the A-weighted radiated noise levels are plotted in the one-third
octave bands below 1000Hz. Contrary to the global vibration level, the radiated noise levels are not
significantly reduced in the lower frequency range, since the low-frequency modes of a non-baffled plate are
not very efficiently radiating. Especially below 250Hz, the radiated noise level hardly exceeds the background
level. However, in the frequency band of 315Hz, where the highest amount of low-frequency ðo500HzÞ
acoustic energy is radiated, there is a clear noise reduction of 5 dB. In the higher frequency range, only a small
reduction of 3 dB can be observed in the one-third octave band of 630Hz. Due to the limited radiation
efficiency of the low-frequency modes, the global plate vibration reduction results only in a 1 dB(A) total noise
reduction.

5.2. Example 2: noncausal ILC

This paragraph studies the global effect on the plate behaviour of the noncausal controller, developed in the
previous section. Contrary to the causal ILC controller, which creates a low-frequency reduction, the
noncausal controller focuses on a noise and vibration reduction in the higher frequency range (500–900Hz),
where most of the radiated noise is situated. Due to the introduction of the noncausal bandpass filter in the
design of L, no control signal is sent to the secondary actuator below 500Hz. This explains why the global
vibration spectrum below 500Hz with control is the same as the uncontrolled spectrum (Fig. 17). In the
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previous section, Fig. 14(b) shows that between 500 and 1000Hz the vibrations in the error sensor are
significantly reduced by the control signal of the noncausal ILC controller. Due to the appropriate selection of
the control configuration with successive poles in the plant transfer function Psec (presented in Section 3), a
vibration cancellation at the error sensor is supposed to result in a global vibration reduction. This reasoning
is confirmed in Fig. 17: a vibration reduction of 1.5 dB is achieved by the noncausal ILC controller in the
frequency band between 500 and 1000Hz. Because the three most efficiently radiating plate modes at 611, 772
and 881Hz are strongly damped, the noise reduction is more pronounced than the vibration reduction: a total
noise reduction of 7 dB(A) is obtained between 500 and 1000Hz. The noise reduction in one-third octave
bands is presented in Fig. 18. The overall noise reduction over the whole frequency range is only 2.5 dB(A).
This level is limited by the remaining low-frequency noise especially in the one-third octave band of 315Hz,
which is not tackled by the noncausal controller.

Since one zero (at 800Hz) in the transfer function between the actuator and the sensor is inevitable in the
frequency range 500–900Hz (Fig. 3(b)), there is still 1 peak at this frequency in the global vibration level with
control, which limits the vibration reduction. However, this vibration peak cannot be observed in the radiated
noise (Fig. 18) because the corresponding vibration mode at this frequency is not an efficient noise radiator.
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It is clear that due to the good selection of the actuator and sensor position a global vibration and noise
reduction can be realized in the higher frequency domain. The cancellation of the disturbance in the optimal
error sensor results in a global performance. Other configurations with the error sensor at different positions,
which were not optimal (i.e. no successive poles in the secondary plant transfer function Psec), were also
experimentally tested. Noncausal ILC control filters were designed for all these new configurations. Although
a disturbance rejection could be easily obtained at the new error sensors by the controllers, in all these cases,
the local disturbance reduction resulted in a higher global vibration level than the level obtained by the
optimal configuration.

One of those non-optimal control configurations is briefly discussed in the following paragraph. While the
actuator is located in the same corner of the plate as in the previous examples, the error sensor is placed in the
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middle of the plate’s lower part. Figs. 19(a and b) show the transfer function of the secondary plant Psec

between this actuator and sensor: it is clear that two zeros with limited damping (at 620 and 778Hz) occur in
this transfer function, which is not optimal according to the procedure for the selection of the configuration
developed in Section 3.

In a similar way as in Section 4.3.2 a noncausal controller is developed for this non-optimal control
configuration. The performance of the designed controller at the error sensor is plotted in Fig. 20: after
convergence of the ILC algorithm a strong reduction is obtained in the frequency range of interest between
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500 and 900 Hz. Although the vibration level at the error sensor is significantly reduced in this frequency band,
the global vibration level (Fig. 21(a)) and the radiated noise level (Fig. 21(b)) have hardly decreased. Due to
the zeros in the plant transfer function Psec at 620 and 778Hz, a high control force is necessary to cancel the
vibrations at the error sensor at these frequencies. However, since a zero is not a global property of the plate,
this high control force creates high vibration levels at the greater part of the plate such that the global
vibration level and the radiated noise level are significantly amplified around 620 and 778Hz. The reduction
achieved by the controller at other frequencies is almost completely cancelled by the amplification at those 2
frequencies, which explains why no significant global performance can be obtained.
5.3. Example 3: combined time-invariant feedback and ILC controller

The residual noise, which cannot be cancelled out by the noncausal controller in the second example, has a
predominant low-frequency character. This low-frequency noise can be suppressed by the addition of a causal
ILC controller or its equivalent time-invariant feedback controller, as presented in the first example. Therefore
a control system, consisting of a time-invariant feedback controller combined with a noncausal ILC
controller, is designed for the plate. The control scheme of this controller is presented in Fig. 22. The control
signal ui to the secondary actuator consists of a signal ui;fb from the causal feedback control filter and a signal
ui;ILC from the ILC controller. The feedback part of the combined controller, which uses a collocated error
sensor in the corner of the plate (measuring yi;fb), uses the same control filter Cfb as in the first example. This
controller reduces the low-frequency noise, compensates for repetitive as well as random disturbances and is
immediately effective at the first controlled impact without a learning process. The noncausal ILC part of the
controller is only used to reduce the residual high-frequency error, that cannot be controlled by the time-
invariant feedback controller Cfb. The error signal for this noncausal controller yi;ILC is measured by a second
error sensor, which is located at the optimal position to achieve global reduction: this position is identical to
the optimal location defined in the second example. The development of the noncausal ILC controller (control
filters Q and L) is performed in the same way as for the noncausal controller without feedback. However, the
controllable plant is now PILC=1þ CfbPfb instead of PILC, where Pfb and PILC are the two transfer functions
between the actuator force in the corner of the plant and the responses in the error sensors, respectively.

Fig. 23 shows the vibration levels measured by the second error sensor (measuring yi;ILC) in 4 frequency
bands below 1000Hz during the first 100 impacts. The behaviour in the 2 frequency bands below 500Hz differs
significantly from the 2 bands above 500Hz. Below 500Hz, the time-invariant feedback controller is mainly
active, such that no learning behaviour can be observed. The final reduction is already obtained after the first
controlled impact. Above 500Hz, the control signal from the time-invariant feedback controller strongly
decreases due to the lowpass filter in the control design. In this frequency range, however, the ILC controller
becomes active and will determine the control performance. In the frequency bands 500–750Hz and
750–1000Hz, the vibration level decreases gradually at every impact due to the learning process in the ILC
Pfb(z) +

di
ui

yi,fb

ILC

Pdist,fb(z)

Cfb

+

ui,ILC

ui,fb

Pdist,ILC(z)

PILC(z) +
yi,ILC

Fig. 22. Control scheme of the combined feedback/ILC controller.
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algorithm. After 50 impacts, there is no further reduction, which indicates that the ILC controller has
converged.

The global performance of this combined controller after convergence is also measured and compared to the
two other controllers. The global vibration reduction of this controller is plotted in Fig. 24. It is clear that
the new controller combines the benefits of the 2 previous controllers: a vibration reduction is achieved in the
lower as well as in the higher frequency range. This results in a broadband global vibration reduction of 6 dB.
Fig. 25 shows the noise reduction in the one-third octave bands below 1000Hz without and with feedback/ILC
control. In the 3 one-third octave bands, where the plate radiates the highest noise levels (315, 630 and
800Hz), significant noise reductions are obtained by this combined controller such that the total noise level is
reduced by 3.5 dB(A).

6. Conclusions

In this paper, a design strategy is proposed for the development of an ASAC system to reduce repetitive
structural impact noise. The design process is divided into two parts: first the optimal control configuration is
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defined and afterwards a control algorithm is implemented for the selected actuator(s) and sensor(s). To find
the optimal actuator and sensor locations, a selection procedure is developed such that the chosen control
system will create a high global vibration and noise reduction in case of a perfect disturbance cancellation at
the error sensors. Since an impact generates a broadband excitation, most of the noise will be radiated at
certain structural resonance frequencies. Therefore in the optimal configuration for impact noise control the
global vibrations are strongly reduced at these resonance frequencies without significantly amplifying the
vibration levels in the intermediate frequency ranges.

In the second step of the ASAC design process, a control algorithm is developed for the selected optimal
configuration. This algorithm defines the achievable reduction of the vibrations at the error sensors and
consequently the possible global noise and vibration reduction. Because in many industrial applications, where
the reduction of impact noise is an issue, successive impacts have a repetitive behaviour, this repetitiveness can
be used in the design of the control algorithms. Causal and noncausal ILC controllers, which use knowledge
from the previous impacts to calculate the control signal for the next impact, are presented and compared to
traditional time-invariant feedback algorithms. While equivalent feedback controllers exist for causal ILC
systems, this is not the case for noncausal ILC systems. Therefore, the benefits of noncausal ILC algorithms
(i.e. much more freedom in the design of the ILC filters) are extensively explored in this paper. The efficiency
of the whole design methodology has been verified in a practical example, where an ASAC system is developed
to reduce the low frequency ðo1000HzÞ impact noise radiated by a plate. The same methodology can however
also be used for the active reduction of higher frequency noise, if the higher frequency content of the successive
impacts is sufficiently repetitive.

The future work consists of a theoretical and a practical part. In the first part, the possibilities of noncausal
ILC algorithms will be further investigated. For example, different noncausal algorithms, each focussing on a
certain frequency range, will be implemented in parallel in order to get a good performance over a broader
frequency range. The second part focuses on the application of the developed methodology on real industrial
machinery (e.g. punching machines, presses, etc.). In these industrial noise problems, additional challenges can
be expected: the influence of the limited repetitiveness of the successive impacts has to investigated; a proper
trigger signal, which announces a new impact accurately, has to be searched; probably new actuators and
sensors, which can deliver and measure a high amount of energy during short periods, will be necessary; etc.
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However, provided these practical problems can be resolved, the good results, achieved with the presented
design methodology of ASAC systems, are very promising for the use in industrial impact noise applications.
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Appendix A. Implementation of noncausal filters

The response yðtÞ of a linear time-invariant (LTI) noncausal system can be calculated by the convolution of
the input signal xðtÞ and the impulse response hðtÞ of the system:

yðtÞ ¼

Z þ1
�1

xðtÞhðt� tÞdt (A.1)

The two-sided Laplace transform of the impulse response function hðtÞ is defined as

HðsÞ ¼

Z þ1
�1

hðtÞe�st dt (A.2)

for all s � C, for which the above integral converges.
Two spaces can be distinguished depending on the causality of the LTI operator. While a transfer function

with poles in the open left half-plane corresponds to a stable causal system, a transfer function with poles in
the open right half-plane defines a stable anti-causal system, i.e. the impulse response hðtÞ is equal to 0 for t40.
For example, HðsÞ ¼ 1=s2 � 2� 0:1ð2p600Þsþ ð2p600Þ2Þ is the two-sided Laplace transform of the stable, anti-
causal system with the following impulse response:

hðtÞ ¼
�

1

2p600
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:12

p e2p600�0:1t sinð2p600
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:12

p
tÞ for to0

0 for tX0

8><
>: (A.3)

Consider an anti-causal LTI system Hanticaus with an impulse response hanticausðtÞ, which processes an input
signal xðtÞ to calculate the output yðtÞ. Define the equivalent causal LTI system Hcaus;eq with the impulse
response hcaus;eqðtÞ, which is the reverse of hanticausðtÞ:

hcaus;eqðtÞ ¼ hanticausð�tÞ (A.4)

The two-sided Laplace transform Hcaus;eqðsÞ of the equivalent causal system equals

Hcaus;eqðsÞ ¼

Z þ1
�1

hcaus;eqðtÞe
�st dt

¼

Z þ1
�1

hanticausð�tÞe�st dt

¼ �

Z �1
þ1

hanticausðrÞe
sr dr

¼

Z þ1
�1

hanticausðrÞe
�ð�sÞr dr

¼ Hanticausð�sÞ (A.5)

Define the signals xrevðtÞ and yrevðtÞ as the reverse of the signals xðtÞ and yðtÞ:

xrevðtÞ ¼ xð�tÞ (A.6)

yrevðtÞ ¼ yð�tÞ (A.7)
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Using Eq. (A.1), yrevðtÞ can be calculated:

yrevðtÞ ¼ yð�tÞ

¼ Hanticausðxð�tÞÞ

¼

Z þ1
�1

xðtÞhanticausð�t� tÞdt

¼

Z þ1
�1

xrevð�tÞhanticausð�t� tÞdt (A.8)

Since hanticaus is anticausal, hanticausð�t� tÞ ¼ 0 for to� t:

yrevðtÞ ¼

Z þ1
�t

xrevð�tÞhanticausð�t� tÞdt

¼ �

Z �1
t

xrevðZÞhanticausðZ� tÞdZ

¼

Z t

�1

xrevðZÞhanticausðZ� tÞdZ

¼

Z t

�1

xrevðZÞhcaus;eqðt� ZÞdZ (A.9)

Since hcaus;eq is causal, hcaus;eqðt� ZÞ ¼ 0 for toZ:

yrevðtÞ ¼

Z þ1
�1

xrevðZÞhcaus;eqðt� ZÞdZ

¼ Hcaus;eqðxrevðtÞÞ (A.10)

This derivation proves the principle, which is used for the calculation of the output of an anti-causal operator
Hanticaus. The scheme of the calculation procedure is shown in Fig. 26. The equivalent causal operator Hcaus;eq,
which can be calculated according to Eq. (A.5), is applied on the reverse of the input signal. The result of this
operation is then the reverse of the desired output.

As an example, the equivalent causal filter is calculated for the anti-causal system, described by Eq. (A.3):

Hcaus;eqðsÞ ¼ Hanticausð�sÞ

¼
1

ð�sÞ2 � 2� 0:1ð2p600Þð�sÞ þ ð2p600Þ2

¼
1

s2 þ 2� 0:1ð2p600Þsþ ð2p600Þ2
(A.11)

In Figs. 27(a and b) the impulse response as well as the Laplace transform of the anti-causal and the equivalent
causal system are compared. It is clear that the impulse responses of both filters are symmetric, which explains
why the anti-causal filter can be replaced by the equivalent causal filter. The Bode plot of the filters (Fig. 27(b))
shows that the amplitude of both filters is equal. However, in the anti-causal filter the decrease of the
amplitude introduces a phase lead of 180� while in the equivalent causal filter a phase lag of 180� is present.
This is also the reason why the equivalent causal and the anti-causal filter were combined in the design of the
L-filter to create a bandpass filter without a change of the phase.
reversex(t) xrev(t) Hcaus,eq(s)
=Hanticaus(-s)

reverseyrev(t) y(t)

Fig. 26. The procedure to calculate the output of an anti-causal filter Hanticaus.
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The impulse response hðtÞ of a general noncausal LTI system can differ from 0 for negative as well as for
positive time values. Such a noncausal system can be considered as the combination of a causal system and an
anti-causal system: the system can be implemented either as a sum or a product of causal and anti-causal
operators. In this application, the control filter L is developed as a product of operators with causal and anti-
causal poles and zeros. Therefore, in the implementation of this filter, the input signal y is successively
processed first by all the causal and afterwards by all the anti-causal operators.
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